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A Method of Improving the

Response of Waveguide

Directional Couplers*

This communication describes a tech.
nique for decreasing the frequency variation
of coupling of multihole broadwall wave-

guide directional couplers. The usual curve

of coupling vs frequency is shown in Fig. 11

and has a peak-to-peak variation of 1.0 db.
The proposed method, which is similar to

the use of multiple sections in coaxial cou-
plers, 2perturbs the coupled voltage by adding

a smail voltage that is in phase at midband
where the coupling is looser and out of phase
near the band edges. The required perturba-
tion is produced by means of the coupling
structure shown in Fig. 2, where the phase

of one coupled voltage is delayed w-ith re-

spect to the other coupled voltage because
of an added path length AL. The coupled

power is proportional to:
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Fig. l—Compenszited and uncompensated
cOuDler response.

Fig. 2—proposed method of compensation,

The above equation assumes that the com-

pensating array has the same frequency de-
pendence as does the main array.

The computed compensated response is

also shown in Fig. 1 for @= 360 at 10,2 Gc
and k!/kl = 0.06. The original deviation of

0.9 db has been reduced to less than 0.2 db.

One should note that the directivity of
the compensating array need not be as great
as that of the main array because of its
relative decoupling.
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The Characteristic Impedance of

Square Coaxial Line*

INTRODUCTION

Recent attempts to design a precision
coaxial to strip line transformer have raised
the need to know accurately the character-

istic impedance of square coaxial line (i. e.,

a concentric line, as shown in Fig. 1, having
inner and outer conductors of square cross

section ) which forms an intermediate part
of the proposed transformer.
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Fig. l—Cross section of square coaxial line.

Solutions to this problem exist in the
literature ranging from the purely empirical

[1] through the approximate analytic [2] to
the exact [3]. For precise work the empirical

and approximate analytic solutions are not
generally sufficiently accurate while the
exact solution, inl-olving elliptic integrals, is
computationally tedious and does not give

a direct answer to the usual question of what
dimensions must be used to obtain some

specified characteristic impedance.

NUMERICAL SOLUTIOH

Recently as part of a more general task
attention has been given to the program-
ming of an IBM 7090 computer to solve

boundary value problems in Laplace’s equa-
tion by the square net method [4]. This ef-
fecti~ely reduces the problem of establishing
the potentials at the nodal points of the
mesh to that of solving a group of simultane-
ous linear finite difference equations—there
being as many equations as meshes in the
net. The method of solution is based on the

usual matrix techniques but makes use of
the special band nature of the matrix to

speed in~-ersion. ITith the present program
it is possible to cope with up to about 1000
mesh problems in realistic computing times.

Obviously if the potentials in the space
between a pair of conducting surfaces can be
established it is a simple matter to extend
the work to obtain the charge on the surfaces
and hence the capacit>-. Since capacity per
unit length is simply related to the char-
acteristic impedance of the corresponding
transmission line bv
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where

ZO = the characteristic impedance in ohms

C=the capacity per unit length (fd/m)
v = the velocity of light (2.9979X 10s

m/see)

this method has an obvious application in
the solution of the square coaxial line prob-

lem.

This has been done for e~,acuated square

coaxial lines of the side length ratios (ratio

of outer to inner conductor side length)
shown in Table I. An effective increase in
the fineness of mesh subdivision for a given

program capacity can be had by making use
of obvious symmetry and treating only a
quadrisection. To further improve the accu-
racy each problem was worked out three

times on an increasingly fine net and the
three solutions subjected to Richardson ex-

trapolation [5] to obtain the figure given in
the tables.

ACCURACY

It is of interest to attempt to estimate
the accuracy of this data. It follows from

‘llomson’s theorem [6] that the values of
capacity derit-ed in this way must always
be too high and hence the characteristic im-

pedances too low. The only way to say by
how much would appear to be to compare

these solutions with what little numerical

data is available from the various analytic

attacks.

Chen [2] develops a conformal trans-
formation solution for the capacity of an

isolated square corner between two infinite
right angle plates and then makes the as-
sumption that a square coaxial line may be

considered to be made up of eight paralleled
capacities, four parallel plate and four iso-
lated corner. This should give good results
for low side length ratios where the corners

are well spaced and at the same time make
only a small contribution to the total capac-
ity. For a line with s = 1.25 Chen’s results

give ZO = 11.005 ohms; comparison with
Table I indicates agreement to around 0,1

per cent.
Anderson [3] gives an exact conformal

transformation solution and uses it to cal-
culate to four figures one numerical example
with s = 3.0. Interpreted as a characteristic
impedance this solution gives ZO = 60.75

ohms. Comparison with Table I shows a
close concurrence within 0.4 per cent. Skiles

and Higgins [7] have also attacked this
problem by a ty-pe of \-ariational approach
and also give a numerical result for s = 3.0,

obtaining somewhat inconsistently with
.\nderson upper and lower bounds of 60.65

and 60.47 ohms, respecti~-ely. The value
shown in Table I will be seen to be contained

between these limits and to agree with their
mean within around 0.05 per cent.

From this evidence it seems fair and per-
haps even conservative to claim an average
accuracy within ~ per cent for the figures
given in Table I.

APPLICATION TO DESIGN

To make this information more useful for

design purposes the basic data given in
Table I has been subjected to inverse
(Lagrangian) interpolation to prepare a

table of side length ratios corresponding to

specified characteristic impedances, ad\,anc-

ing in one ohm steps from O to 100 ohms,


